LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2018

CH 3812 - CHEMICAL KINETICS

Date: 27-10-2018	Dept. No.	Max.: 100 Marks
m' 00 00 10 00		

Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. What are the assumptions of conventional transition state theory?
- 2. Compare order and molecularity of a reaction.
- 3. Write the significance of the ratio of partition functions when two molecules react to form a non-linear activated complex.
- 4. Mention the significance of volume of activation.
- 5. Define the term Hammett acidity function.
- 6. Hydrogen peroxide decomposes in water by a first order process. Calculate the rate constant for the reaction if 0.156 mol dm⁻³ solution of H_2O_2 in water has an initial rate of 1.14×10^{-5} mol dm⁻³ s⁻¹.
- 7. What is the effect of temperature on the rate of enzymatic reactions?
- 8. Outline the graph relating the concentration and time of a simple consecutive reaction and explain.
- 9. Write the principle of relaxation technique to study fast reaction kinetics.
- 10. Distinguish between stationary and non-stationary chain reactions.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Discuss the factors affecting the effectiveness of collision.
- 12. How is surface area of a solid determined using Langmuir adsorption isotherm?
- 13. Explain any two methods of determining order of a reaction.
- 14. Write a note on 'cage effect' with regard to the collision of molecules in solutions.
- 15. Calculate the rate constant for the decomposition of hydrogen iodide at 700 K, using collisiontheory formula. The energy of activation and the collision diameter of HI are 198.4 kJ mol⁻¹ and 3.5 A⁰ respectively.
- 16. Describe the equilibrium and steady state approach for homogeneous catalytic reactions with the help of potential energy diagram.
- 17. Write the importance of Skrabal plots in acid-base catalysis.
- 18. Explain the Langmuir-Hinshelwood mechanism of bimolecular surface reactions.
- 19. Derive an expression for relaxation rate constant and relaxation time for a fast reaction.
- 20. Differentiate competitive and non-competitive enzyme inhibition mechanisms.
- 21. Write a note on the first and second explosion limits for H₂-O₂ branched chain reaction.

22. Derive the expressions for the concentrations of reactants and products for a first order parallel reaction at time't'.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Derive the Eyring equation relating the thermodynamic parameters and rate constant of a reaction.
 - b. Draw and explain the potential energy surface diagram for the following reaction,

$$H^{\alpha} + H^{\beta} - H^{\gamma} \longrightarrow H^{\alpha} - H^{\beta} + H^{\gamma} \tag{5+5}$$

- 24a. Discuss the Lindemann mechanism for atom and radical combination reaction in the presence of chaperon.
 - b. Distinguish between time and true order of a reaction.

(6+4)

- 25a. Show that Bronsted catalytic law is a special case of linear free energy relations.
 - b. Write the BET equation and explain the terms involved in it.

6+4

- 26a. The rate constant for the reaction, $S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$ is 1.6×10^{-5} mol⁻¹ dm ³s⁻¹. Calculate the rate constant for the reaction in presence of 10^{-2} mol dm⁻³ of BaCl₂.
 - b. Explain the double sphere model for the influence of dielectric constant on the rate of an ion-ion reaction in solution. (4+6)
- 27a. Derive the Michaelis-Menten equation for single substrate enzymatic reactions.
 - b. The enzyme, protein catalase catalysing the decomposition of hydrogen peroxide has K_M and turnover number of 22×10^{-3} mol L^{-1} and 4×10^7 s⁻¹ respectively. Calculate the maximum rate of the reaction if the total enzyme concentration is 10 nM. (7+3)
- 28a. Derive the Stern Volmer equation and explain its verification.
 - b. Explain the principle of flash photolysis for studying the kinetics of fast reactions.

(5+5)

\$\$\$\$\$\$\$\$\$\$\$\$